Mitochondrial GTP insensitivity contributes to hypoglycemia in Hyperinsulinemia Hyperammonemia (HI/HA) by inhibiting glucagon release
نویسندگان
چکیده
Mitochondrial GTP (mtGTP)-insensitive mutations in glutamate dehydrogenase (GDH H454Y ) result in fasting and amino acid-induced hypoglycemia in Hyperinsulinemia Hyperammonemia (HI/HA). Surprisingly, hypoglycemia may occur in this disorder despite appropriately suppressed insulin. To better understand the islet-specific contribution transgenic mice expressing the human activating mutation in beta-cells (H454Y mice) were characterized in vivo. As in the humans with HI/HA, H454Y mice had fasting hypoglycemia but plasma insulin concentrations were similar to the controls. Paradoxically, both glucoseand glutaminestimulated insulin secretion were severely impaired in H454Y mice. Instead, lack of a glucagon response during hypoglycemic clamps identified impaired counter regulation. Moreover, both insulin and glucagon secretion were impaired in perifused islets. Acute pharmacologic inhibition of GDH restored both insulin and glucagon secretion and normalized glucose tolerance in vivo. These studies support the presence of a mtGTP-dependent signal generated via beta-cell GDH that inhibits alpha-cells. As such, in children with activating GDH mutations of HI/HA this insulin-independent glucagon suppression may contribute importantly to symptomatic hypoglycemia. The identification of a human mutation causing congenital hypoglucagonemic hypoglycemia highlights a central role of the mtGTP-GDH-glucagon axis in glucose homeostasis. Page 2 of 33 Diabetes
منابع مشابه
Mitochondrial GTP Insensitivity Contributes to Hypoglycemia in Hyperinsulinemia Hyperammonemia by Inhibiting Glucagon Release
Mitochondrial GTP (mtGTP)-insensitive mutations in glutamate dehydrogenase (GDH(H454Y)) result in fasting and amino acid-induced hypoglycemia in hyperinsulinemia hyperammonemia (HI/HA). Surprisingly, hypoglycemia may occur in this disorder despite appropriately suppressed insulin. To better understand the islet-specific contribution, transgenic mice expressing the human activating mutation in β...
متن کاملInteraction of Islet α-Cell and β-Cell in the Regulation of Glucose Homeostasis in HI/HA Syndrome Patients With the GDHH454Y Mutation
The hyperinsulinemia/hyperammonemia (HI/HA) syndrome—the secondmost common form of congenital hyperinsulinism—is a rare autosomal dominant disease manifested by hypoglycemic symptoms and elevated serum ammonia triggered by fasting or high-protein meals (1). In 1955, Cochrane et al. described a child and her father, both with hypoglycemia that was aggravated by consumption of a low-carbohydrate,...
متن کاملHyperinsulinism/hyperammonemia syndrome in children with regulatory mutations in the inhibitory guanosine triphosphate-binding domain of glutamate dehydrogenase.
The hyperinsulinism/hyperammonemia (HI/HA) syndrome is a form of congenital hyperinsulinism in which affected children have recurrent symptomatic hypoglycemia together with asymptomatic, persistent elevations of plasma ammonium levels. We have shown that the disorder is caused by dominant mutations of the mitochondrial enzyme, glutamate dehydrogenase (GDH), that impair sensitivity to the allost...
متن کاملMolecular basis and characterization of the hyperinsulinism/hyperammonemia syndrome: predominance of mutations in exons 11 and 12 of the glutamate dehydrogenase gene. HI/HA Contributing Investigators.
Glutamate dehydrogenase (GDH) is allosterically activated by the amino acid leucine to mediate protein stimulation of insulin secretion. Children with the hyperinsulinism/hyperammonemia (HI/HA) syndrome have symptomatic hypoglycemia plus persistent elevations of plasma ammonium. We have reported that HI/HA may be caused by dominant mutations of GDH that lie in a unique allosteric domain that is...
متن کاملHyperinsulinism/hyperammonemia (HI/HA) syndrome due to a mutation in the glutamate dehydrogenase gene.
The hyperinsulinism/hyperammonemia (HI/HA) syndrome is a rare autosomal dominant disease manifested by hypoglycemic symptoms triggered by fasting or high-protein meals, and by elevated serum ammonia. HI/HA is the second most common cause of hyperinsulinemic hypoglycemia of infancy, and it is caused by activating mutations in GLUD1, the gene that encodes mitochondrial enzyme glutamate dehydrogen...
متن کامل